Numerical Methods for Large-Scale Lyapunov Equations with Symmetric Banded Data
نویسندگان
چکیده
منابع مشابه
Numerical methods for Lyapunov equations
This chapter is about numerical methods for a particular type of equation expressed as a matrix equality. The Lyapunov equation is the most common problem in the class of problems called matrix equations. Other examples of matrix equations: Sylvester equation, Stein equation, Riccati equation. Definition 4.0.1. Consider two square matrices A, W ∈ Rn×n. The problem to find a square matrix X ∈ Rn...
متن کاملNumerical solution of large-scale Lyapunov equations, Riccati equations, and linear-quadratic optimal control problems
We study large-scale, continuous-time linear time-invariant control systems with a sparse or structured state matrix and a relatively small number of inputs and outputs. The main contributions of this paper are numerical algorithms for the solution of large algebraic Lyapunov and Riccati equations and linearquadratic optimal control problems, which arise from such systems. First, we review an a...
متن کاملAdaptive Numerical Methods for Large Scale Simulations and Data Assimilation
Numerical simulation is necessary to understand natural phenomena, make assessments and predictions in various research and engineering fields, develop new technologies, etc. New algorithms are needed to take advantage of the increasing computational resources and utilize the emerging hardware and software infrastructure with maximum efficiency. Adaptive numerical discretization methods can acc...
متن کاملA Parameter Free ADI-like Method for the Numerical Solution of Large Scale Lyapunov Equations
An algorithm is presented for constructing an approximate numerical solution to a large scale Lyapunov equation in low rank factored form. The algorithm is based upon a synthesis of an approximate power method and an alternating direction implicit (ADI) method. The former is parameter free and tends to be efficient in practice, but there is little theoretical understanding of its convergence pr...
متن کاملConvergence Analysis of Projection Methods for the Numerical Solution of Large Lyapunov Equations
The numerical solution of large-scale continuous-time Lyapunov matrix equations is of great importance in many application areas. Assuming that the coefficient matrix is positive definite, but not necessarily symmetric, in this paper we analyze the convergence of projection type methods for approximating the solution matrix. Under suitable hypotheses on the coefficient matrix, we provide new as...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SIAM Journal on Scientific Computing
سال: 2018
ISSN: 1064-8275,1095-7197
DOI: 10.1137/17m1156575